CURSO DE CÁLCULO INFINITESIMAL
O ANÁLISIS TRASCENDENTAL

(Continuación)

13. Derivadas de las funciones implícitas.

Sea la ecuación

(1) \[F(x, y) = C \]

en que \(C \) es una constante.

Se dice que \(y \) es función implícita de \(x \) y se trata de calcular \(\frac{dy}{dx} \) sin resolver la ecuación en \(y \).

Si, de la ecuación (1), se despejara \(y \) en función de \(x \), se obtendría una relación como

(2) \[y = f(x) \]

Para que este valor de \(y \) satisfaga a (1) es preciso que esta última ecuación se verifique idénticamente cuando se reemplaza en ella \(y \) por \(f(x) \), es decir que la expresión \(F(x, f(x)) \) debe ser idénticamente igual a \(C \); por consiguiente, todos los términos que contienen \(x \) se deben destruir unos con los otros. Luego la derivada de esta función respecto a \(x \) debe ser igual a cero.
La función $F(x, f)$ es una función compuesta, su derivada respecto a x tiene por expresión

$$\frac{dF}{dx} + \frac{dF}{df} \frac{df}{dx}$$

Así esta expresión debe ser cero. Reemplazemos, en ella, f por su valor y, tendremos

$$\frac{dF}{dx} + \frac{dF}{dx} \frac{dy}{dx} = 0$$

O bien

$$\frac{dy}{dx} = -\frac{dF}{dx} \frac{dy}{dF}$$

El mismo resultado se obtiene de la manera siguiente:

Sea

$$z = F(x, y)$$

una función compuesta en que se considera y como función de x, se sabe que la diferencial de z tiene por expresión

$$dz = \frac{dF}{dx} dx + \frac{dF}{dy} dy$$

Si z debe ser igual a una constante C su diferencial debe ser nula, luego dx, dy deberán satisfacer a la ecuación:

$$\frac{dF}{dx} dx + \frac{dF}{dy} dy = 0$$

De aquí se despeja el mismo valor de $\frac{dy}{dx}$ que hemos encontrado más arriba.

Regla.—Para obtener la derivada de una función implícita como $F(x, y) = C$ se escribe que la diferencial del primer miembro, considerado como una función compuesta, es igual a cero.

Aplicación.—Se da la ecuación

$$x^2 + y^2 = r^2$$

i se pide el valor de $\frac{dy}{dx}$. Según la regla indicada, se tendrá

$$2x \ dx + 2y \ dy = 0$$
O bien
\[\frac{dy}{dx} = -\frac{x}{y} \]

Con las reglas anteriormente expuestas se puede obtener la derivada de una función cualquiera: Como la derivada representa, en geometría, el coeficiente angular de la tangente a una curva, se ve que este primer estudio nos permite ya trazar la tangente a una curva, cualquiera que sea su ecuación.

CAPÍTULO IV

DE LAS INTEGRALES

14. Si una función \(F(x) \) tiene por diferencial \(f(x)dx \), se dice que \(F(x) \) es la integral de \(f(x) \) \(dx \). Se ve que el cálculo de las integrales es el inverso del cálculo de las diferenciales.

Desde luego se puede demostrar que si \(F(x) \) es una integral de \(f(x) \) \(dx \), todas las integrales de \(f(x) \) \(dx \) tendrán por expresión \(F(x) + C \) en que \(C \) es una constante.

En efecto sean \(F_1(x) \) y \(F_2(x) \) dos integrales distintas de \(f(x) \) \(dx \), estas dos funciones tendrán la misma derivada \(f(x) \) luego la función \(F_1(x) - F_2(x) \) tendrá siempre por derivada cero. Pero, se ha demostrado que una función que tiene una derivada siempre nula es constante, luego

\[F_1(x) - F_2(x) = C \]

O bien
\[F_1(x) = F_2(x) + C \]

Recíprocamente, es evidente que las dos funciones \(F(x) \) y \(F(x) + C \) tienen la misma diferencial, cualquiera que sea la constante \(C \).

Así se puede siempre añadir una constante arbitraria a la integral \(F(x) \).

Representación geométrica de la integral.

Consideremos una curva plana referida a dos ejes rectangulares \(OX,OV \) e sea \(y = f(x) \) su ecuación.
Sea EH esta curva, EF una ordenada fija e MP una ordenada móvil de abscisa x; el área comprendido entre la curva, el eje OY y las dos ordenadas EF, MP será cierta función de x, representamos lá por $F(x)$ y buscamos su diferencial. Para esto, incrementemos la variable x de cierta cantidad $dF' = dx$, el incremento de la función es representado por el trapecio infinitamente pequeño $NMM'P$; la derivada de $F(x)$ será el límite de la razón entre MMP y dx; sabemos que en la determinación de este límite se pueden despreciar los infinitamente pequeños de orden superior a dx, por consiguiente podemos reemplazar el trapecio MMP por el rectángulo MCP, pues la diferencia entre los dos es representada por el triángulo CMC'; este último tiene un área del mismo orden de pequeñez que el rectángulo de base MC e de altura $M'C$; MC es igual a dx e $M'C$ es infinitamente pequeño, luego el producto $MC \times M'C$ se puede despreciar; la derivada de $F(x)$ será, pues, el límite de MCP o bien de $\frac{f(x)}{dx}$ o $f'(x)$.

Así la función $F(x)$ que representa el área $EFMP$ tiene por derivada $f'(x)$ y por consiguiente por diferencial $f(x) \cdot dx$, esta función $F(x)$ es, pues, la integral de $f(x) \cdot dx$.

Se ve que, cualquiera que sea la posición de la ordenada fija EF, se obtendrá siempre la misma diferencial $f(x) \cdot dx$ para el área contada hasta la ordenada MP; ahora si el área contada desde EF hasta MP tiene por expresión $F(x)$ el área contada desde otra ordenada origen tendrá una expresión como $F(x) + C$; es decir que se puede añadir a la integral de $f(x) \cdot dx$ una constante arbitraria, resultado conforme a lo que se ha obtenido más arriba.
Notaremos ahora que el área \(EFMP \) es el límite de la suma de un número infinitamente grande de trapezios infinitamente pequeños análogos al trapezio \(MM'PP' \) comprendidos entre \(EF \) i \(MP \). Cada uno de estos trapezios se podrá reemplazar por un rectángulo análogo a \(MC'PP' \), pues esta sustitución equivale a despreciar infinitamente pequeños de orden superior i se sabe que el límite de la suma no cambia por esto; así la integral \(F(x) \) representa la suma de un número infinitamente grande de rectángulos infinitamente pequeños de base \(dx \) i de altura igual a los ordenadas sucesivas de la curva. Por este motivo se dice a veces suma de \(f(x) \) \(dx \) en vez de integral de \(f(x) \) \(dx \) i el signo que espresa la integral de \(f(x) \) \(dx \) es una \(S \) algo deformada (inicial de la palabra suma). Así para espresar que \(F(x) \) es la integral de \(f(x) \) \(dx \) se escribe:

\[
F(x) = \int f(x) \, dx
\]

I, para poner en evidencia la constante arbitraria que se puede añadir a la integral, se escribe también:

\[
\int f(x) \, dx = F(x) + C
\]

La interpretación geométrica de la integral demuestra que esta existe siempre porque cuando se da una curva \(y = f(x) \), el área comprendida entre esta curva, el eje \(OX \) i dos ordenadas tales como \(AF, MP \) es perfectamente determinada.

INTEGRALES DEFINIDAS E INDEFINIDAS

15. Cuando, como en el caso anterior, se considera el área comprendida entre la curva \(y = f(x) \), el eje \(OX \), una ordenada fija arbitraria i una ordenada móvil de abcisa \(x \), se encuentra, para este área, una cierta función \(F(x) \); esta función, como hemos visto, es la integral de \(f(x) \) \(dx \) i se escribe:

\[
\int f(x) \, dx = F(x) + C
\]

\(F(x) \) es lo que se llama la integral indefinida de \(f(x) \) \(dx \).
Supongamos que se trate ahora de determinar el área comprendido entre la misma curva, el eje OX y las dos ordenadas AA', BB' de abscisas a y b se dirá: como el área contada desde EF hasta la ordenada MP tiene por expresión $F (x) + C$ se tiene también

$$\text{área } EFBB' = F (b) + C$$

$$\text{área } EFAA' = F (a) + C$$

I restando estas dos ecuaciones

$$\text{área } A'ABB' = F (b) - F (a)$$

La constante arbitraria C ha desaparecido como debía suceder, pues el área $A'ABB'$ no puede tener sino un solo valor, se escribe entonces

$$\int_a^b f(x) \, dx = F (b) - F (a) \tag{3}$$

Las dos letras b e a que se ponen arriba e abajo del signo suma representan los límites entre los cuales varía x e se llaman límites de la integral; b es el límite superior e a el límite inferior.

La integral $\int_a^b f(x) \, dx$ se llama integral definida porque x varia entre dos límites definidos.

Las dos clases de integrales definidas e indefinidas se llaman a veces cuadraturas para recordar su interpretación geométrica.

La fórmula (3) nos muestra inmediatamente que la integral definida cambia de signo cuando se invierten los límites; en efecto

$$\int_a^b f(x) \, dx = F (a) - F (b) = - \int_b^a f(x) \, dx$$

En resumen, para calcular una integral definida, habrá que determinar primero la integral indefinida. Cuando esta última no se puede obtener, se puede, a veces, calcular la integral defi-
nida, sea por medio de artificios que no obedecen a ninguna regla, sea por medio del método de Cauchy que será indicado más tarde.

16. Las integrales indefinidas, a pesar de que su existencia ha sido bien demostrada, no por esto se pueden siempre obtener; la razón de esta dificultad es que las funciones que se emplean en matemáticas son en número muy reducido, de manera que varias integrales son funciones que no conocemos.

Por esto, los métodos de integración que vamos a esponer ahora son más bien una indicación de la manera como se deben dirigir las investigaciones, pues en muy pocos casos se pueden obtener las integrales.

1.° método de integración. — Es el método que consiste a examinar si la función que se trata de integrar es la diferencial de una función ya conocida. La aplicación de este método requiere solamente, como se ve, un poco de memoria y alguna práctica. Así se tiene luego

\[
\int x^m \, dx = \frac{x^{m+1}}{m+1}
\]

\[
\int \cos x \, dx = \sin x
\]

\[
\int \frac{dx}{x} = \log x
\]

\[
\int e^x \, dx = e^x
\]

\[
\int \frac{dx}{1+x^2} = \arctg x
\]

\[
\int \frac{dx}{\sqrt{1-x^2}} = \arcsen x
\]
2.° Método por sustitución.

Sea la integral

\[\int \sin x^m \cos x \, dx \]

A la variable \(x \) se sustituye otra variable \(y \) de tal manera que

\[\sin x = z \]

Entonces

\[\cos x \, dx = dz \]

\[\int \sin^m x \cos x \, dx = \int z^m \, dz = \frac{z^{m+1}}{m+1} = \frac{\sin^{m+1} x}{m+1} \]

Se ve que la sustitución de la variable \(z \) a la variable \(x \) ha trasformado la primera integral en otra que se sabe integrar. Una vez obtenida esta última integral se reemplaza en su expresión la variable \(z \) por su valor en función de \(x \).

Sea, por ejemplo:

\[\int \frac{x \, dx}{\sqrt{1 + x^2}} \]

Pongamos

\[1 + x^2 = z \]

Se tendrá

\[2 \, x \, dx = dz \]

Luego

\[\int \frac{x \, dx}{\sqrt{1 + x^2}} = \int \frac{dz}{2 \sqrt{z}} = \sqrt{z} = \sqrt{1 + x^2} \]

Otro ejemplo. Sea

\[I = \int \tan x \, dx \]

Se puede escribir

\[I = \int \frac{\sin x \, dx}{\cos x} \]

Pongamos

\[\cos x = z \]
Se tendrá

\[-\sin x \, dx = dz \]

\[I = - \int \frac{dz}{z} = - \int \frac{Lz}{z} = L \frac{1}{z} = L \frac{1}{\cos x} \]

La aplicación de este método en los ejemplos anteriores es bien indicada por la forma misma de las funciones que se trataba de integrar. En los casos mas numerosos no sucede lo mismo y generalmente es una suerte cuando una sustitución conduce así a la integración; sin embargo cuando una integral no se puede obtener desde luego se debe siempre tratar de hacer una sustitución de variable; cuando el método no conduce al resultado se aplica el siguiente:

17. **Método de integración por partes.** —Es uno de los métodos que da relativamente más integrales; su principio se deduce de la fórmula que da la diferencial de un producto de dos factores:

\[d(uv) = udv + vdu \]

O bien

\[udv = d(uv) - vdu \]

Si se toman las integrales de los dos miembros, se obtiene

\[\int udv = uv - \int vdu \]

1.º Ejemplo: Sea la integral: \(\int xLx \, dx \).

Haremos

\[\begin{cases} u = Lx \\ dv = x \, dx \end{cases} \]

luego

\[\begin{cases} du = \frac{dx}{x} \\ v = \frac{x^2}{2} \end{cases} \]

I aplicando la regla indicada, tendremos

\[\int xLx \, dx = \frac{x^2}{2} \int xLx - \int \frac{x^2 \, dx}{2} = \frac{x^2}{2} Lx - \frac{x^2}{4} \]
2. Ejemplo: Sea la integral:

\[I_m = \int \frac{x^m \, dx}{\sqrt{1 - x^2}} \]

El índice \(m \) de \(I \) es el exponente de \(x \) en la integral. Hagamos

\[
\begin{align*}
 u &= x^{m-1} \\
 du &= (m-1) x^{m-2} \, dx \\
 dv &= \frac{x \, dx}{\sqrt{1 - x^2}} \\
 v &= -\sqrt{1 - x^2}
\end{align*}
\]

luego

\[
\begin{align*}
 \int u \, dv &= uv - \int v \, du \\
 &= x^{m-1} \sqrt{1 - x^2} + (m-1) \int x^{m-2} \sqrt{1 - x^2} \, dx
\end{align*}
\]

Tendremos

\[I_m = x^{m-1} \sqrt{1 - x^2} + (m-1) \int x^{m-2} \sqrt{1 - x^2} \, dx \]

Pero

\[
\int x^{m-2} \sqrt{1 - x^2} \, dx = \int \frac{x^{m-2}}{\sqrt{1 - x^2}} \, dx - \int \frac{x^m}{\sqrt{1 - x^2}} \, dx = I_{m-2} - I_m
\]

Luego

\[I_m = x^{m-1} \sqrt{1 - x^2} + (m-1) I_{m-2} - (m-1) I_m \]

O bien

\[m I_m = (m-1) I_{m-2} - x^{m-1} \sqrt{1 - x^2} \]

Esta fórmula da \(I_m \) en función de \(I_{m-2} \); del mismo modo se podrá calcular \(I_{m-2} \) en función de \(I_{m-4} \) y así en seguida; llegaremos finalmente a \(I_1 \) si \(m \) es impar o a \(I_0 \) si \(m \) es par.

Se tiene ahora

\[I_1 = \int \frac{x \, dx}{\sqrt{1 - x^2}} = -\sqrt{1 - x^2} \]

\[I_0 = \int \frac{dx}{\sqrt{1 - x^2}} = \arcsen x \]

Por consiguiente se podrá siempre calcular \(I^m \).
No hai más métodos generales para integrar; sin embargo, hay varias clases de funciones que siempre se pueden integrar según reglas bien determinadas, la exposición de estas reglas de integración hará la materia del próximo capítulo.

CAPÍTULO V

DE LAS FUNCIONES QUE SE PUEDEN SIEMPRE INTEGRAR

Integración de los polinomios algebraicos enteros

18. Sea la integral

\[\int f(x) \, dx \]

en que se tiene

\[f(x) = A \cdot x^m + B \cdot x^{m-1} + \ldots + E \]

La integral buscada será la suma de las siguientes

\[A \int x^m \, dx + B \int x^{m-1} \, dx + \ldots + E \int dx \]

Se ve que la integración se podrá siempre efectuar e se tendrá

\[\int f(x) \, dx = A \cdot \frac{x^{m+1}}{m+1} + B \cdot \frac{x^m}{m} + \ldots + E \cdot x + C \]

Integración de las fracciones racionales

19. Sea la integral

\[\int \frac{F(x)}{f(x)} \, dx \]

Si \(F(x) \) y \(f(x) \) son dos polinomios algebraicos enteros se dice que \(\frac{F(x)}{f(x)} \) es una fracción racional.
Supondremos, en primer lugar, que \(F(x) \) sea de grado superior a \(f(x) \); se efectuará entonces la división de \(F(x) \) por \(f(x) \) hasta obtener una resta \(\phi(x) \) de grado inferior a \(f(x) \), y se escribirá

\[
\frac{F(x)}{f(x)} = \frac{\phi(x)}{f(x)} + \frac{\psi(x)}{f(x)}
\]

La función \(\psi(x) \) es entonces un polinomio entero, y se admitirá que la fracción \(\frac{\phi(x)}{f(x)} \) es irreductible.

Se tendrá entonces

\[
\int \frac{F(x)}{f(x)} \, dx = \int \frac{\psi(x)}{f(x)} \, dx + \int \frac{\phi(x)}{f(x)} \, dx.
\]

En el segundo miembro, \(\psi(x) \) es un polinomio algebraico entero, luego se puede efectuar la primera integral. La segunda también se puede efectuar si se descompone la fracción \(\frac{\phi(x)}{f(x)} \) en fracciones simples.

Indicaremos aquí como se hace esta descomposición.

Descomposición de las fracciones racionales en fracciones simples

20. Por hipótesis, se supone que la fracción \(\frac{\phi(x)}{f(x)} \) es irreductible; sea \(m \) el grado de la ecuación \(f(x) = 0 \) y \(a \) una raíz de orden \(n \) de multiplicidad, de manera que

\[
f(x) = (x-a)^n f_n(x)
\]

Se tiene idénticamente, cualquiera que sea la constante \(A_n \):

\[
\frac{\phi(x)}{f(x)} = \frac{A_n}{(x-a)^n} + \frac{\phi(x)-A_n f_n(x)}{(x-a)^n f_n(x)}
\]

Si se elije \(A_n \) de tal manera que \(\phi(x) \) contenga \(x-a \) en factor se podrá suprimir el factor común \(x-a \) en los dos términos de la última fracción y se tendrá
\[
\frac{\phi(x)}{f(x)} = \frac{A_n}{(x-a)^n} + \frac{\phi_1(x)}{f_1(x)}
\]

Con las relaciones

\[
\phi(x) - A_n f_n(x) = (x-a) \phi_1(x)
\]

\[(x-a)^{n-1} f_n(x) = f_1(x)
\]

Se ve que \(\phi_1(x)\) será de grado inferior a \(f_1(x)\) i que \(f_1(x)\) contiene \(x-a\) a la potencia \(n-1\) solamente; en jeneral la fracción \(\frac{\phi_1(x)}{f_1(x)}\) será irreductible, sin embargo podría suceder que sus dos términos tengan un factor común; en este caso el factor común tiene que ser una potencia de \(x-a\) como se puede averiguar fácilmente. En todo caso \(f_1(x)\) contendrá \(x-a\) a la potencia \(n-1\) a lo mas, de manera que se podrá escribir también

\[
\frac{\phi_1(x)}{f_1(x)} = \frac{A_{n-1}}{(x-a)^{n-1}} + \frac{\phi_2(x)}{f_2(x)}
\]

\(f_2(x)\) contendrá \(x-a\) a la potencia \(n-2\) a lo mas; si se sigue de la misma manera se llegará finalmente a una relación de la forma

\[
\frac{\phi(x)}{f(x)} = \frac{A_n}{(x-a)^n} + \frac{A_{n-1}}{(x-a)^{n-1}} + \ldots + \frac{A_1}{x-a} + \frac{\phi_n(x)}{f_n(x)}
\]

La última fracción será irreductible, su denominador no contendrá más el factor \(x-a\) i el grado de \(\phi_n(x)\) será inferior al de \(f_n(x)\). La primera constante \(A_n\) no puede ser nunca cero ni infinito porque su valor es dado por la ecuación

\[
A_n = \frac{\phi(a)}{f_n(a)}
\]

en que los dos términos son diferentes de cero; mientras tanto, los otros coeficientes \(A_{n-1}, \ldots, A_1\) o varios de ellos podrán ser nulos.
La descomposición podrá seguir de la misma manera, quitando sucesivamente a \(f(x) \) todas sus raíces. Como \(\phi_n(x) \) es siempre de grado inferior a \(f_n(x) \) se ve que finalmente se llegará a una última fracción de la misma forma que las anteriores.

Es fácil ahora de ver que la descomposición, cualquiera que sea el procedimiento que se adopte para hacerla, dará siempre las mismas fracciones simples; en efecto, supongamos que se tenga a la vez

\[
\frac{\phi(x)}{f(x)} = \frac{A_1}{(x-a)^{n-1}} + \frac{A_{n-1}}{(x-a)^{n-2}} + \ldots + \frac{A_1}{x-a} + \frac{\phi_n(x)}{f_n(x)}
\]

\[
\frac{\phi(x)}{f(x)} = \frac{A_1'}{(x-a)^{n-1}} + \frac{A_{n-1}'}{(x-a)^{n-2}} + \ldots + \frac{A_1'}{x-a} + \frac{\phi_n(x)}{f_n(x)}
\]

Supongamos \(n' > n \); los segundos miembros deben ser idénticos; si se multiplican por \((x-a)^{n} \) i si en el resultado de la multiplicación se hace \(x = a \) se obtendrá

\[
A_1' = 0
\]

Del mismo modo se vería que todos los numeradores de las fracciones, en que el exponente de \(x-a \) es superior a \(n \) deben ser cero, luego tendremos \(n' = n \); se debe tener ahora

\[
A_1 + A_1 + \ldots + A_1 + \left(x-a \right)^{n-1} + \frac{\phi_n(x)}{f_n(x)} (x-a)^{n-1} =
\]

\[
= A_1' + A_1' + \ldots + A_1' + \left(x-a \right)^{n-1} + \frac{\phi_n(x)}{f_n(x)} (x-a)^{n-1}
\]

Haciendo en esta relación \(x = a \) se obtiene \(A_1 = A_1' \); dividiendo entonces los dos miembros por \(x-a \) y haciendo de nuevo \(x = a \) se obtiene \(A_1'' = A_1' \), y así en seguida.
Caso de las raíces imaginarias.—Sea $\alpha + \beta \sqrt{-1}$ una raíz de orden p de multiplicidad; a esta raíz corresponderá otra $\alpha - \beta \sqrt{-1}$ del mismo orden de multiplicidad, de manera que se podrá escribir

$$f(x) = [(x - \alpha^2) + \beta^2]^p f_p(x)$$

Se tiene, entonces, la identidad

$$\phi(x) = Mx + N = \phi(x) - (Mx + N) f_p(x)$$

Se determinan M y N de tal manera que el numerador de la última fracción sea divisible por $(x - \alpha^2) + \beta^2$; bastará para esto, reemplazar x por $\alpha + \beta \sqrt{-1}$ e igualar a cero la parte real y el coeficiente de $\sqrt{-1}$ en el resultado de la sustitución. M y N serán perfectamente determinados.

La última fracción se podrá entonces simplificar y en seguida descomponer de la misma manera que $\frac{\phi(x)}{f(x)}$. Se ve que el procedimiento es el mismo que en el caso de las raíces reales y se obtendrá una serie de fracciones en que los denominadores serán potencias de $[(x - \alpha^2) + \beta^2]$ y los numeradores polinomios del primer grado.

Alberto Obrecht

Director del Observatorio Astronómico

Profesor de las clases de mecánica y cálculo diferencial e integral de la Universidad

(Continuará)